
16

JAVA magazine JAVA magazine | 03 2017

LOGGING AND TRACING WITH
CONTEXT INFORMATION

Figuring out what your
application is doing
It is a team effort to deliver high quality soft-
ware. But when a misfortunate event happens
to one of your users, it is on you as a developer
to find out what happened.

The user’s ticket is your starting point: The
user reports that he wasn’t able to print the
invoices. Let’s turn to the logs on the server
to find out what happened. How well are you
prepared? Let’s have a look at the first log
entry (Listing 1).

There is a first clue: the ID of an item belonging
to the invoice. How does this solve the case
when there are many items on one invoice,
and item ID 4711 is very common? Given the
following code, how could we put in some
breadcrumbs into the log to analyze this in a
better way? (Listing 2).

At least the invoice ID and some user related
information would have been helpful in the
log. Let’s see how this can be done. You’ll
find all code examples in the Git repository
referenced at the end of this article.

Logging Framework log4j
The log4j logging framework has come a long
way: Version 1.2 was around from May 2002
to 2015. Version 2.0 was released in July 2014,
with 2.8 being available in January 2017.

Chances are good that you have come across
log4j before. Most of the features described
in this article have been part of the 1.2 version
already, except when we point out that it’s a
2.x feature.

Feeding information to the
context
There are two ways to feed information to the
logging context of log4 1.x: The Mapped
Diagnostic Context (MDC) and the Nested
Diagnostic Context (NDC). They behave like a
map and a stack where you can store informa-
tion that will be put into the log automatically
on every log statement of the current thread.
Depending on the framework you’re using
the context information might be passed to
asynchronous tasks automatically.

In the example given above it would have
been helpful to have the invoice number as

Logging and Tracing with
Context Information
Take a deep dive into log4j version 2 and Zipkin to learn how to add context information in
your logs, use trace IDs to correlate log entries across services, and how to switch on debug
logs for single requests.

Alexander Schwartz
is a Principal IT
Consultant at msg
systems. He’s been
in Web develop-
ment for more than
15 years and enjoys
productive working
environments,
agile projects and
automated tests.
At conferences and
user group meetings
he talks about the
things he is pas-
sionate about.

part of the log statement. The following piece
of code puts this information into the MDC
(Listing 3).

You can put any value into the map as long
as it is a string - and as long as you remove it
after your processing. If you wouldn’t clean
it up, the value would stay in the context of
the current thread no matter what it would
execute next.

When using log4j 2.x MDC and NDC have been
merged to ThreadContext. If you prefer the old
syntax with MDC, use slf4j as a logging facade.

If you’re using a PatternLayout in your log4j
configuration you’ll just need to add %X to
print the MDC contents on every log entry.
If you are using a JSONLayout, this informa-
tion will be included automatically in the log
(Listing 4).

The new log entry produced by the updated
code and the updated log configuration
contains the invoice ID (Listing 5).

Now we can narrow it down to a single invoice
that is problematic.

Automatically collecting
context information
We’ve updated the code to add the context
related to the invoice. But logging (as tracing)
is also a crosscutting concern: In most applica-
tions there’s a user, a URL, and a remote IP for
every processed request.

When you’re running in a Java EE environment,
you could instantiate a Servlet Filter. If you’re
running in JAX-RS environment, you can imple-
ment a context handler for all incoming and
outgoing requests (please see RequestFilter
and ReponseFilter in the examples project).

Once you have these filters in place, your log
statement will be enhanced without changing
a single line of business code (Listing 6).

Tracing calls within and across
services
With the information we’ve collected so far
we can relate log entries to a user. Looking
at the timestamp of the logs we can see the
user’s retry attempts. But in the logs we
don’t have an identifier to aggregate the log
entries of an attempt. Furthermore, we don’t
have information to correlate logs across
services.

Google’s Dapper concept describes how to
trace calls within a service and across servi-
ces: When the request starts on the first
service, it’s assigned a random trace ID.
When there is a request from the first service
to a remote service, this call is assigned both
the trace ID and a new span ID. When there is
a second call to a remote service, it is assig-
ned the same trace ID and different span ID.
It also records start and end times on client
and server side - but more on that later.

Dapper is an internal tool at Google that was
described in one of Google’s research papers.
The paper outlined the concepts and named
the additional HTTP headers that are used to
forward trace information between services.
Zipkin implements a central store that can
search and visualize the traces. It also has
client libraries to transmit traces from a
service to the central store. Zipkin has its
roots at Twitter, but all code is now available
together with several additional libraries as
part of the OpenZipkin project.

To collect trace information in your applicati-
ons there are several libraries to help you: As
part of the OpenZipkin project there are the
brave libraries that wrap existing server and
client side Java components to collect the
trace information. There are other libraries
to handle Go, JavaScript and other langua-
ges. When you’re using Spring Boot there is
Spring Sleuth that will instrument your clas-
ses to collect the trace information once you
add it as a dependency to your project.

Listing 3

07:26:00.595 d.a.t.d.Invoice ERROR - can’t load item ID 4711

for (Invoice i : invoiceRepository.findAll()) {
 i.calculateTotal();
}

for (Invoice i : repository.findAll()) {
 MDC.put(“invoiceId”, Long.toString(i.getId()));
 try {
 i.calculateTotal();
 } finally {
 MDC.remove(“invoiceId”);
 }
}

Listing 2

Listing 1

Listing 4

<PatternLayout pattern=”%d{HH:mm:ss.SSS} %X %-5level ...”/>

Listing 5

08:39:42.969 {invoiceId=1} ... - can’t load item ID 4711

Listing 6

08:52:54.276 {http.method=GET,
http.url=http://localhost:8080/api/startBillingRun, ...,
user=Theo Tester} ERROR d.a.t.d.Invoice - can’t load item ID
4711

18

JAVA magazine JAVA magazine | 03 2017

This fact has another benefit: you can’t only
use this in a development environment, but
also in the production environment to col-
lect traces for a specific request where you
normally sample only a small percentage of
your requests. A caveat of the plugin: it sends
the HTTP headers for all browser requests. Be
sure to deactivate the plugin when you don’t
need it.

Thinking this through, you’ll probably want to
block any ‘X-B3-*’ HTTP header from reaching
your servers from the outside or someone
might trigger your debug logs when you don’t
want to.

Per-Request Debugging with
log4j2 and Zipkin
The additional HTTP headers set by the
developer tools allow you to collect the
traces in production. But what about the
log4j logs? They are usually set to warn-only
in production.

Log4j 2.x ships with a solution for this:
Zipkin also forwards a ‘X-B3-Flags’ header
between servers with the value ‘1’ represen-
ting ‘debug on’. Read this information and
place into the MDC as a key ‘X-B3-Flags-
debug’. With the following configuration
DynamicThresholdFilter will read it and
create log statements at trace level for every
request with a header ‘X-B3-Flags’ of value
‘1’. (Listing 9).

Just make sure you are using log4j 2.7 or
later for this: In earlier versions, there was a
bug that prevented this to work properly for
log statements with parameters (see ticket
LOG4J2-1511 for details).

Choosing the right tools for
your environment
This article showed many possibilities to
enrich your log statements. But where should
you start?

Usually the filter to store request information
like user name and HTTP URL in the MDC is a
place to begin: as a cross cutting implemen-
tation it will enrich all logs and it will not need
any additional libraries. It will even work with

older log4j version and other logging imple-
mentations like Logback.

If you are in a microservice environment
where calls are forwarded to other services,
implementing the Dapper concept is also a
low hanging fruit. It comes with the cost of
an additional library in your application. It will
enhance the logs of your application even if
you are not using a central Zipkin server to
store the traces.

Once Dapper like tracing is in place you can
start adding trace IDs to error messages to
connect an error reported by the user to the
entries in the log.

After that (and if you are able to update to
log4j 2.7 or later) you might want to look into
per-request debugging.

Taking these steps will prepare you for the
next mystery case. It will be only a matter of
time until it knocks on your door.

The following examples assume that you are
using Spring Boot with Sleuth to collect the
traces in your application, and Zipkin to store,
search and visualize the traces.

Technicalities to trace calls
across services
In order to send the trace information to a
remote service there are standardized HTTP
headers (Listing 7).

Sleuth adds these headers to outgoing re-
quests from the client and parses them when
they arrives at the server. It also places it into
the Mapped Diagnostic Context. This leads to
a log statement like this (Listing 8).

Now we can search our logs: all entries with
the same trace ID across all our services will
originate from a single user’s request.

You can also extract the trace ID and append
it to any error message you show to your user.
This way you’ll have it at hand once the user
opens a ticket and you can start filtering your
logs immediately.

Running Zipkin full scale
But Zipkin can do more: it can collect your
trace and span information including timing
information and provide you with an overview
of your service landscape. This allows you to
search for a specific entry, or entries that pro-
duced errors or took particularly long. These
information are collected separately from
your logs. In production environments you
usually collect only a small percentage of the
traces to avoid storing too much data.

Zipkin comes with a web frontend, a server
application and a backend to store the
information (either Cassandra, MySQL or
Elasticsearch). The web frontend allows you
to generate a map of the interactions of your
services and to drill down single requests.

Not Only Developer Tools for
Zipkin
A server will only create a new trace ID when
the incoming request lacks this information.
This fact is used by the Chrome Zipkin plugin:
it will create the trace ID in the browser and
forward it to the server. This way the trace
ID is known in advance: from the developer
tools you can use it to directly link to the web
frontend of the Zipkin server. It also sets the
additional ‘X-B3-Sampled’ header: This ensu-
res that the trace is forwarded to the Zipkin
server, independent of the trace configuration
of the application.

Sleuth takes care that this header received by
the first server is forwarded to all other servers
handling the request, so all parts of the trace are
collected and forwarded to the Zipkin server.

 LOGGING AND TRACING WITH
CONTEXT INFORMATION

Listing 7

GET /api/callback HTTP/1.1
Host: localhost:8080
...
X-B3-SpanId: 34e628fc44c0cff1
X-B3-TraceId: a72f03509a36daae
...

Listing 8

09:20:05.840 {X-B3-SpanId=34e628fc44c0cff1, X-B3-
TraceId=a72f03509a36daae, ...} ERROR d.a.t.d.Invoice - can’t
load item ID 4711

Figure 1. Zipkin Web UI to search and explore traces

Listing 9

<DynamicThresholdFilter key=”X-B3-Flags-debug” onMatch=”ACCEPT”
defaultThreshold=”warn” onMismatch=”NEUTRAL”>
 <KeyValuePair key=”true” value=”trace”/>
</DynamicThresholdFilter>

REFERENTIES
Log4j 2, especially Contexts https://logging.apache.org/log4j/2.x/

manual/thread-context.html

Zipkin https://github.com/openzipkin/zipkin

Brave https://github.com/openzipkin/brave

Spring Sleuth https://github.com/spring-cloud/spring-cloud-sleuth

Dapper http://research.google.com/pubs/pub36356.html

Example Project https://github.com/ahus1/logging-and-tracing

